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Noisy Label Detection and Counterfactual

Correction
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Abstract—Data quality is of paramount importance to the
training of any machine learning model. Recently proposed
approaches for noisy learning focus on detecting noisy labeled
data instances by using a fixed loss value threshold and exclud-
ing detected noisy data instances in subsequent training steps.
However, a predefined, fixed loss value threshold may not be
optimal for detecting noisy labeled data, whereas excluding the
detected noisy data instances can reduce the size of the training
set to such an extend that accuracy can be negatively affected. In
this article, we propose Noisy label Detection and Counterfactual
Correction (NDCC), a new approach that automatically selects
a loss value threshold to identify noisy labeled data instances,
and uses counterfactual learning to correct the noisy labels. To
the best of our knowledge, NDCC is the first work to explore
the use of counterfactual learning in the noisy learning domain.
We demonstrate the performance of NDCC on several datasets
under a variety of label noise environments. Experimental results
show the superiority of the proposed approach compared to the
state–of–the–art, especially in the presence of severe label noise.

Impact Statement—The accuracy of machine learning models
depends on training data quality. Quite unsurprisingly then,
it drops dramatically (up to 53% in our experiments) as the
percentage of noisy labels increases. The approach presented here
is shown to maintain high performance even in the presence of
highly corrupted data (i.e., 80% noisy labels) by performing joint
noisy label detection and correction. Specifically, the proposed
approach increases the accuracy rate of noisy label detection (up
to 25%), while achieving a high noisy label correction rate (up
to 72%). When presented with severe label noise (i.e., 80% noisy
labels), the proposed approach lowers the noise rate to 52.5%.
Beyond improving the accuracy of machine learning models that
are trained with noisy label data, this research highlights the need
to treat (as opposed to discard) noisy label instances during the
training process.

Index Terms—data quality, noisy learning, deep learning

I. INTRODUCTION

MACHINE learning models have been applied in a wide

range of applications, including, but not limited to,

traffic prediction [1], face recognition [2], product recom-

mendation [3] and online fraud detection [4]. Deep neural

networks, one of the most popular branches of machine

learning, have achieved remarkable performance to a variety

of tasks due in part, to large quantities of human–annotated
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data [5], [6]. However, the label annotation process is labor–

intensive, and often introduces label noise for reasons includ-

ing insufficient information for low quality data, subjectivity in

the labeling process, and limited number of expert annotators

due to budgetary constraints [7]. After the completion of

the data labeling process, identifying and correcting wrong

labels is resource– and time–consuming. Furthermore, over–

parameterized machine learning models, such as Deep Neural

Networks, can overfit on noisy data instances by memorizing

them during training [8], [9]. Learning and assessing machine

learning models using noisy labels can result in biases and

misleading accuracy reporting, with potentially detrimental

results, such as wrong disaster diagnosis [10] or perpetuating

biases in resource allocation (e.g., loan application) [11]. There

are two common types of noise, namely: feature noise and

label noise [12]. In this work, we focus on label noise which

has been shown to be more harmful than feature noise [13].

To facilitate training a learning model over a noisy dataset,

one commonly adopted approach is noise sample selection

[14], which distinguishes the noisy from clean data instances

during the training process, then excludes noisy instances from

the training process [15]–[17]. In line with prior art, this work

leverages loss to distinguish between noisy from clean data

instances [18], [19]. The challenge is how to quantify the loss

value during the training process. [20] ranks the loss value

for all data instances and pre–sets the loss threshold with a

specific noise rate (NR) to identify noisy data instances as

those whose loss value is lower than the threshold. The key

problem with that approach is twofold: (i) in the real–world,

the noise rate is hard to estimate, and (ii) different choices of

loss functions have different impacts on the loss value ranking.

To address these challenges, we leverage peer loss [21] for

noisy label detection. Specifically, peer loss is computed by

substituting the current label with other possible labels in the

label set, and does not require knowledge of the noise rate.

Furthermore, since the comparison is among the same data

instance with different labels, different loss functions do not

affect the comparison result. [21] sets peer loss threshold to 0
to distinguish the noisy from clean data instances. However,

our experiments (see Figure 4) show that 0 may not always

be the optimal peer loss threshold. This article proposes an

automated threshold selection approach to overcome this issue.

Upon detecting suspected noisy labeled data instances, these

instances are typically excluded from the training process

[22]. However, for small or severely noisy labeled datasets,

excluding noisy data can dramatically reduce the size of

the training set, to the point it becomes useless for training

purposes. Furthermore, despite having noisy labels, the feature
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values of noisy labeled data instances are clean and could still

be useful for training. This work is the first to explore the

feasibility of correcting noisy labeled data instances by find-

ing the true label using counterfactual learning. Specifically,

for each detected noisy labeled instance, counterfactual data

instances are computed for all possible labels. The label that

achieves the minimum value of counterfactual score is then

selected as the true label.

This work focuses on training a robust learning model in

the presence of noisy labeled data in the training set, through

detecting and correcting noisy labeled data instances. A new

approach is proposed to (i) identify potentially noisy labeled

data instances during training, (ii) estimate the true label of

each detected noisy labeled data instance through counterfac-

tual data generation, and (iii) output a robust learning model

and revised dataset (i.e., with corrected labels). We evaluate the

ability of the proposed approach to handle varying degrees of

noisy labeled data using two benchmark datasets. In summary,

the main contributions of this article are:

• Proposing a novel approach for automating the selection

of the noisy peer loss threshold used to identify noisy

labeled data during training.

• Introducing a practical approach for estimating the most

probable true label for each detected noisy data instance

using counterfactual learning.

• Demonstrating the superiority of the proposed solution

against baselines using benchmark datasets under differ-

ent noisy environments.

To ensure the reproducibility of our work, our method avail-

able at https://github.com/IDIASLab/NDCC.

II. RELATED WORK

With the increase of complexity and scale of datasets,

the possibility of including unreliable labels or noisy labels

also increases. Training machine learning models with noisy

labels significantly impacts their prediction performance. For

this reason, a large variety of deep learning models for

robust learning in noisy data environments has already been

developed [23], [24]. For instance, the loss function–based

approach in [23] minimizes the risk of unseen clean data with

the presence of noisy labels in the training data. However, such

loss function–based approaches are restricted to a particular

framework, and thus, lack adaptability. Some approaches (e.g.,

[16], [21], [22], [24]) focus on selecting the true labeled

instances from a noisy labeled dataset to mitigate the negative

influence of noisy data instances. For instance, [21] uses peer

loss to select clean data instances by fixing the loss threshold

to 0. However, the optimal loss threshold may not always be

fixed or predetermined. Instead of using a fixed threshold, this

work learns the loss threshold for noisy labeled data instances

detection during the training process itself.

After detecting suspected noisy labeled data instances, many

approaches (e.g., [16], [22], [24]) exclude such instances

in subsequent training steps. However, dropping suspected

noisy label data instances can result in a diminished training

set, while not taking advantage of the clean (and potentially

useful) features of noisy labeled samples. [17] assigns more

weight on clean than suspected noisy data instances. At the

same time, mistreating noisy data instances as clean can lead

to a highly inaccurate model. A label correction method is

proposed in [25] but it considers the noise transition matrix to

be known a priori for a given dataset. However, our proposed

approach does not require prior knowledge of the noise

transition matrix. We instead propose a counterfactual-based

approach to correct the labels of suspected noisy labeled data

instances. Counterfactual learning has been widely explored in

explainable machine learning to shed light into how/why the

output of a machine learning model would change if the input

(i.e., features) were to change [25], [26]. Specifically, [27]

leverages counterfactual learning to produce example–based

explanations by feature perturbation. Feature perturbation may

lead to different prediction results given a learning model; data

instances with perturbed feature values (in our case labels) are

considered counterfactual [28]. To the best of our knowledge,

this work is the first to incorporate counterfactual learning

directly into noisy learning.

Finally, training supervised machine learning models with

crowdsourced data is inherently related to learning from noisy

labels, and has been applied in a wide range of domains

(e.g., [29]–[34]). For instance, [29] introduced an algorithm

for learning a classifier, the accuracy of each annotator, and

the actual true label of each data instance based on maximum

likelihood estimation. More recently, [33] proposed multiple

noisy label distribution propagation to tackle the problem of

label integration from multiple sources, while accounting for

intercorrelation between multiple label sets of various data

instances. Last but not least, [34] proposed label noise robust

support vector machine inference to achieve good model

performance while reducing labeling costs. Different from

the problem studied in this article, each data instance in

crowdsource learning is associated with multiple labels, some

of which may be noisy, since obtaining reliable labels can

be time–consuming and/or costly. Instead, in our setting, each

data instance is restricted to having only one label. This makes

our task more challenging since no other label information

can be referenced when the label of a given data instance is

suspected to be noisy.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

Let D = (X,Y ) denote a clean training dataset and

D̃ = (X, Ỹ )1 a noisy dataset. N is the total number of data

instances in D and D̃ (i.e., X = {xi}
N
i=1), and xi ∈ X is

an M dimensional feature vector. The total number of classes

in both Y and Ỹ are K, and j denotes the class index. The

label of xi is denoted as yi ∈ B
K , with entry j being set to 1

if xi belongs to the jth class, and 0 otherwise. For example,

for K = 5, yi = [0, 1, 0, 0, 0] indicates that xi belongs to

Class 2. The task is to train a model f using D̃, since the

clean dataset D is unavailable, to predict the true label y of

previously unseen data instances. Let ȳ denote the predicted

outcome. To minimize the influence of noisy data on the model

1Data instances in D̃ are either clean or noisy labeled. Same with Ỹ .
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TABLE I
EXPLANATION OF MAIN SYMBOLS USED IN THIS ARTICLE.

Symbol Description

N Total number of data instances. (A data instance is
denoted by index i)

M Total number of features for each data instance. (A
feature is denoted by index m)

K Total number of classes
j jth class

D̃ Noisy dataset
Dpre Clean pretrained dataset in Algorithms 1 and 3

D̂ Revised dataset
Xn/Xc Detected noisy/clean dataset in Algorithm 3
hc/hn Objective function for noise detection/correction

g Pre–trained model obtained by training with Dpre

in Algorithms 1 and 3

f(W) Learning model with weight matrix W ∈ R
K×M

l Categorical cross entropy loss

x̂
j
i Counterfactual data of xi with target label j

ŷ
j
i Counterfactual label when considering target label

j for xi

ỹi Noisy label vector of xi

ỹ
j
i Noisy label of xi with label j

φi Indicator of data instance i being clean or noisy
Tpre Training epoch for pre–train model g in Algorithms

1 and 3
Tcf Counterfactual search epoch in Algorithms 2 and 3
Tn Training epoch in Algorithm 3 step 25
Tall Training epoch for NDCC in Algorithm 3

performance, we propose an approach to detect noisy data

instances, and assign them with the most likely true label

while learning f . We leverage counterfactual learning to search

for the most likely true label for each noisy data instance.

Specifically, each noisy data instance is associated with K

counterfactual data instances (x̂j
i , ŷ

j
i ), each generated for each

label ŷ
j
i , where j ∈ 1, 2, 3, ..,K. By comparing (xi, ỹi) with

each (x̂j
i , ŷ

j
i ), we determine the most likely true label ŷ

j
i , and

substitute the noisy label with ŷ
j
i (see Section IV-C). Table I

summarizes the notation used hereafter.

B. Problem Statement

The goal of this work is to learn a robust classifier f

over a noisy labeled dataset by minimizing the influence

of noisy labeled data instances during training. To achieve

this goal, we split the problem into three sub–problems: (i)

learn a classifier f that accurately maps X to Y , (ii) detect

noisy labeled data instances, and (iii) assign the most likely

true label to suspected noisy labeled data instances through

counterfactual learning. For clarity, clean data instances refer

to data instances with correct labels; noisy data instances refer

to data instances with wrong labels; and observed labels can

be either clean or noisy.

IV. PROPOSED APPROACH

We propose Noisy label Detection and Counterfactual

Correction (NDCC), a novel approach for training a robust

classifier over a noisy labeled dataset. The objective function

of NDCC follows:

argmin
W,x̂

j
i

N
∑

i=1

φihc(W,xi) + (1− φi)hn(W, x̂
j
i ), (1)

where φi is the noisy labeled data instance indicator, hc()
denotes the function for detecting noisy labeled data instances,

and hn() refers to the noisy label correction functions. Both

hn and hc are discussed in detail in Sections IV-A and IV-C,

respectively. The value of φi can be either 1 or 0. Specifically,

if xi is considered to be a clean data instance, then φi is set

to 1. As a result, only hc needs to be computed for clean

data instances. On the other hand, if xi is considered to be a

noisy instance, φi is set to 0, meaning that for each noisy data

instance, only hn needs to be computed.

Overall, Eq. (1) can be viewed as a combinatorial optimiza-

tion problem, which is difficult to solve directly. We therefore

solve Eq. (1) by alternatively searching for the optimal solu-

tions of W and x̂
j
i . Convexity is proven in Appendix A. In

each round, we accomplish the alternative search in two steps,

as follows: (i) noisy label calibration (i.e., search solutions for

x̂
j
i ), which requires noisy label detection (Section IV-A) and

label correction by counterfactual generation (Section IV-C),

and (ii) model training (i.e., search solutions for W).

Figure 1 provides an overview of NDCC. Initially, the noisy

dataset D̃ = (X, Ỹ ) is provided as input to the noisy label

detection module, which then outputs suspected noisy label

data instances (Xn, Ỹ ), and sets the noisy indicator φ = 0 for

each xi ∈ Xn, and 1 for each xi ∈ Xc. Therefore, φihc(W) in

Eq. (1) reflects the loss for clean data instances, whereas (1−
φi)hn(W, x̂i) reflects the loss for noisy labeled data instances.

The label counterfactual correction module assigns each xi ∈
Xn with the most likely true label ŷi, then substitutes D̃ with

the label–revised dataset D̂, to be used in subsequent rounds

of training f(W ). Note that D̂ can be updated multiple times

through the training process, as additionally noisy labeled data

instances are identified.

A. Noisy Label Detection (hc)

Loss can identify noisy labeled data instances [15], [19],

[35]. Specifically, [15] pointed out that the loss of clean data

instances is expected to be lower than that of noisy labeled

data instances, mainly because noisy labeled data instances are

often outliers with respect to the distribution of clean data,

and the learning model tends to make predictions different

from the noisy labels. Experimental results presented in Figure

2 support this claim by showing that the loss value for a

large number of noisy labeled data instances is higher than

that of clean data instances, even under different label noise

environments (i.e., symmetric2 and asymmetric noise3).

The question then is how to determine a loss threshold to

distinguish between clean and noisy labeled data instances.

A relative “large” or “small” loss can be manually specified

by inspecting the overall loss value distribution. However,

a classifier cannot automatically determine whether the loss

score is “large” or “small” without knowing the overall loss

value distribution. Furthermore, having a pre–set and fixed

loss threshold is impractical, as the loss distribution may vary

across different classification tasks. Additionally, the correct

2The true label flips to all other labels with equal probability.
3A noisy label is generated by flipping the true label j to class j+1 [21].
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Fig. 1. Visualization of NDCC.

(a) Symmetric noise, NR = 0.4 (b) Asymmetric noise, NR = 0.4

Fig. 2. Loss value distribution for CIFAR–10 with respect to different noisy
environments. x−axis represents the loss score, and y−axis represents the
frequency of a particular loss score in the x−axis.

labels of noisy data instances are usually unavailable, making

it impossible to pre–select a suitable loss threshold.

Of particular relevance to this problem, [36] proposed peer

loss, defined as LPL = l(f(W,xi),yi) − l(f(W,xi),y
j
i ),

where l(f(W,xi),yi) is the loss with respect to given label

yi, and l(f(W,xi),y
j
i ) is the loss with respect to a possible

random label y
j
i , different from yi. Based on the peer loss,

[21] defined the loss value threshold, which takes all possible

label values into consideration in order to identify data in-

stances with high loss as noisy labeled. Inspired by this idea,

we define the objective function for detecting noisy labeled

data instances as [21]:

hc(W,xi) = l(f(W,xi), ỹi)−
1

K

K
∑

j=1

(l(f(W,xi),y
j
i ), (2)

where f is the learning model with parameters W,

l(f(W,xi), ỹi) denotes the loss value of the observed label,

and 1
K

∑K

j=1(l(f(W,xi),y
j
i ) is the average loss value of

all possible K labels. Figure 3 confirms that the peer loss

value for the majority of the clean data instances is smaller

than that of noisy labeled data instances. Nevertheless, we

consider a hypothetical scenario, in which the loss of a clean

data instance is very high. In this scenario, the loss for

l(f(W,xi),y
j
i )) is high. If the loss value for this data instance

with other possible labels is also high, indicating that the

model f is uncertain about xi, then the average loss value,
1
K

∑

j = 1K(l(f(W,xi),y
j
i ), is also high. Despite the large

loss, the final value hc(W,xi) is likely to be below or close

to the threshold, which separates clean and noisy labeled data

instances. That is because the first term and the second term

in hc are both high, therefore, the final value of hc should

be small. If the loss value for this data instance with other

possible labels is low, then 1
K

∑K

j=1(l(f(W,xi),y
j
i ) is lower

than l(f(W,xi),y
j
i )), meaning that the learning model f

considers ỹi as the least likely true label, even though it is the

true label. In this case, the model considers the data instance as

noisy (φi = 0) based on Eq. 2, and tries to find its possible true

label, resulting in a loss value based on hn(W, x̂ij) according

to Eq. 1. If the true label is found correctly, this scenario does

not affect the overall learning process due to the low value of

hn. However, if the true label cannot be found correctly, the

overall learning process will be impacted by wrongly updating

the label of a clean data instance due to the high value of

hn. Our experiments confirm that even if labels of clean data

instances are wrongly updated (often during the initial phase of

training, when f is not particularly accurate), NDCC learns to

correct many such mistakes in subsequent rounds, as it learns

a more accurate classification model.

(a) Symmetric noise, NR = 0.4 (b) Asymmetric noise, NR = 0.4

Fig. 3. Peer loss value (i.e., computed by Eq. (2)) distribution for CIFAR–10
with respect to different noisy environments. x−axis corresponds to peer loss
score, and y−axis corresponds to frequency with respect to particular peer
loss score in x−axis.

B. Noisy Label Threshold Selection Criterion

After computing hc, the question is how to use it to detect

noisy labeled data instances. [21] considers data instances with

hc ≥ 0 to be noisy labeled. This is because the loss of the

observed label ỹi is larger than the average loss of the other

possible labels y
j
i [21]. However, 0 need not be the optimal

loss value threshold. For instance, Figure 4 shows the peer

loss of 1, 000 randomly selected CIFAR–10 data instances,

under symmetric noise (NR = 0.1). The red dot line (peer loss

threshold of 0) is evidently not optimal compared to the black

dot line, which can detect more noisy labeled data instances.

This work proposes to automate the peer loss threshold

selection by considering as noisy labeled those data instances
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Fig. 4. Peer loss value distribution for random selected 1,000 data instances
in CIFAR–10 under symmetric noise (NR = 0.1). x−axis corresponds to peer
loss score, and y−axis corresponds to each data instance.

Fig. 5. Peer loss value distribution without pre–trained model with random
selected 1,000 data instances in CIFAR–10 under symmetric noise (NR = 0.1).
x−axis corresponds to peer loss score, and y−axis corresponds to frequency
with respect to particular peer loss score in x−axis.

whose loss is large, but not exactly larger, than their average

label loss threshold, as shown in Figure 4.

Before elaborating on our proposed approach, we note

that using a randomly initialized deep neural network as

a starting point can lead to erroneous loss estimation. For

instance, Figure 5 shows that the loss of clean and noisy data

instances may overlap. Erroneous loss estimation can lead to

missdetection of clean instances as noisy (and visa versa),

introducing even more noisy labeled data instances into the

training dataset. Therefore, the starting point of a classification

model is crucial. Inspired by [37], which showed that a small

portion of clean labels improves the model robustness in noisy

detection, we pre–train a model g (see Section VI-A3 for

a detailed discussion on g), using a small portion of data

instances, denoted as Dpre, whose labels are guaranteed to

be accurate. In the real–world, clean data instances can be

obtained from experts [38].

To automatically detect and revise noisy data instances in

the overall training set, we begin by calculating hc for each

data instance in Dpre using g (we denote this as lpc). Next,

since the type of label noise in the training dataset may be

unknown, we randomly select 10% of the data instances in

Dpre, and artificially introduce noise by randomly switching

their label to a different one. The noisy version of the pre–train

dataset is denoted as D̃pre = D̃c
pre∪D̃

n
pre, where D̃c

pre (D̃n
pre)

is the set of clean (noisy) data in D̃pre. Next, we calculate hc

on D̃pre and record the loss as lpn. The difference between lpc
and lpn (i.e., ldiff = lpc − lpn) is used to define the loss area

D̃ns = {xi|ldiff (xi) ≤ min
xq∈D̃c

pre
ldiff (xq), ∀xi ∈ D̃pre}.

The rationale for calculating D̃ns is that it may contain

the majority of noisy data instances, since ldiff is smaller

for noisy data instances compared with clean data instances

because of higher lpn. As illustrated by Figure 6, the absolute

value of the loss difference ldiff for noisy data instances is

higher than the clean data instances.

In subsequent steps in the training process (i.e., without

using D̃pre), we have no prior indication about which data

instances are clean or noisy. Figure 7 shows that noisy data

instances are more likely to reside in D̃ns, in a real training

experiment with D̃. This observation lets us estimate the peer

loss threshold by calculating the average loss, as follows:

thr =
1

|D̃ns|

∑

i

hc(Wg,xi),xi ∈ D̃ns, (3)

where Wg denotes the parameters of the clean pre–trained

model g. Algorithm 1 is proposed to computeD̃ns, which is

used to calculate the noisy label threshold based on Equation

3. thr is initially set to 0, as per [21].

Fig. 6. Pre–train experiment with D̃pre. x−axis corresponds to ldiff , and
y−axis corresponds to each data instance. The red circled data instances

define the upper bound of D̃ns.

(a) First training round (b) Second training round

(c) Third training round (d) Fourth training round

Fig. 7. Test D̃ns on training simulation with D̃ in different learning rounds.
x−axis corresponds to loss score, and y−axis corresponds to frequency with
respect to particular loss score in x−axis. The training around corresponds
to T in algorithm 3.

C. Noisy Label Correction hn

The noisy label correction process is designed to pair the

noisy labeled data instances with their most likely true label

using counterfactual learning. Counterfactual learning is used

to explain algorithmic decisions by feature perturbation [27],

[28], [39]. This work generates a counterfactual data instance

with other possible labels for each detected noisy labeled data

instance (xi, ỹi) ∈ Xn. Specifically, the noisy label detection
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(a) Example for loss value (b) Example for counterfactual label searching

Fig. 8. Illustration of counterfactual noisy label correction.

Algorithm 1 D̃ns Computation

Input: Clean pre–trained model g, clean data subset Dpre,

input noise rate τp, learning epoch Tpre

1: Select the number of |Dpre|×τp data instances from Dpre,

and randomly permute their labels

2: Compute the loss value lpc using Eq. 2 and g

3: Train model g̃ (with g as a starting point) for Tp epochs,

using data instances in D̃pre

4: Compute the loss value lpn using Eq. 2 and g̃

5: Compute ldiff = lpc − lpn
6: Set the smallest value of ldiff of the clean data instances

as the loss value threshold for D̃ns

Output: D̃ns

Algorithm 2 Label Correction with Counterfactual Learning

Input: (xi, ỹi), target label set Y = {1, 2, ..., j, ...K},
Tcf maximum epoch number, learning model

f(W), and counterfactual starting point set

{x1
cf0

, x2
cf0

..., x
j
cf0

, ..., xK
cf0
}

1: Initialize optimal counterfactual set Xcf = ∅
2: for each j ∈ Y do

3: Set x
j
cf0

as the counterfactual starting point and t = 1

4: while (f(W,x
j
cft

) = y
j
i and t ≤ Tcf ) do

5: Optimize the loss using x
j
cft

and xi based on Eq. (4)

6: t = t+ 1
7: end while

8: Select x̂
j
i = xt

cfj
that minimizes Eq. (4)

9: Add x̂
j
i to Xcf

10: end for

Output: Output x̂
j
i in Xcf which achieves the minimum

value of hn, and the corresponding value of hn(x̂
j
i )

module in IV-A provides the loss for each data instance, as

shown in Figure 8(a). In this example, data instance 2 has

the highest loss of 0.9. Thus, (x2, ỹ2) is suspected to be

noisy labeled. The true label y2 for x2 belongs to the label

set Y = {A,B,C}. We consider noisy label B as a viable

candidate because the noise detection module may make a

wrong detection by treating clean data instances as noisy.

Therefore, the target counterfactual data instances include

(x̂j=A
2 , ŷ

j=A
2 ), (x̂j=B

2 , ŷ
j=B
2 ), (x̂j=C

2 , ŷ
j=C
2 ).

The following question is how to generate the counterfactual

data instances for a detected noisy labeled data instance.

One commonly used counterfactual generation criterion is the

Proximity Score [39] which evaluates the distance between

the counterfactual data x̂
j
i and the original feature vector

xi. A smaller distance between the data instance xi and its

counterfactual data instance x̂
j
i represents a higher probability

that the true label of xi is the target class4 j for x̂
j
i . The

proximity measure is computed as:

hn = dist(x̂j
i ,xi), (4)

where dist() denotes Euclidean distance. This work first

selects the data instance with the minimum loss value (i.e.,

highest confidence of correct classification) as the counterfac-

tual starting point (i.e., x̂A
2 , x̂B

2 , and x̂C
2 ) for each possible

label, as illustrated in Figure 8(b) step–1. Next, we minimize

the proximity score by perturbing the feature values of x̂
j
i

(i.e., x̂A
2 , x̂B

2 , and x̂C
2 ) and forcing it to get closer to the

target noisy data instance. However, without any limitation,

x̂
j
i will eventually become equal to xi, reaching a proximity

score of 0. To tackle this issue, we use Validity Score [27]

(a measure of the degree of validity of a counterfactual data

instance) as a stopping criterion for the counterfactual data

instance generation process. Specifically, we use 1 (i.e., highest

value) as our stopping criterion to guarantee that the generated

counterfactual data instance x̂
j
i belongs to the particular class

j. A higher validity score represents higher confidence (i.e.,

lower loss) of the predictor outputting the target label ŷ
j
i for

the counterfactual data instance x̂
j
i , with x̂

j
i being absolutely

valid if the prediction outcome is the same as the target

label (i.e., f(x̂j
i ) = ŷ

j
i ). Taking label A in Figure 8(b)

as an example, after perturbing the feature of x̂A
2 for tA

times, we obtain counterfactual data instance x̂A
2tA

, which

triggers the stopping criterion because f(x̂A
2tA

) ̸= A. The

final output counterfactual data instance for label A is x̂A
2tA−1

4In counterfactual learning, the generated data instance can be classified
into a particular class (i.e., target class) by the learning model.
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(i.e., f(x̂A
2tA−1

) = A). The same process is carried out for

labels B and C. After obtaining all valid counterfactual data

instances, the most likely true label for the noisy data instance

xi is determined to be the label of the counterfactual data

instance with the smallest proximity score. The overall noisy

label correction process is described in Algorithm 2.

D. NDCC Algorithm

Algorithm 3 summarizes the process of learning a model

from potentially noisy labeled data based on Eq. (1). Initially, a

pre–trained model g is used to generate D̃ns for automatically

selecting the loss threshold in each following learning round

(step 2). Then, potentially noisy labeled data instances in D̃ =
(X, Ỹ ) are detected (steps 6− 14). The most likely true label

for each noisy data instance is determined using counterfactual

label correction, and the dataset is updated with the revised

labels (steps 19− 23). The revised dataset (step 24) is used to

train model f (step 25). The noisy loss threshold for the next

iteration is determined using the trained model f (step 27 −
−29). The algorithm terminates when it reaches the maximum

training epoch Tall, or if no updates to the dataset occur.

E. Interrelationship of Counterfactual Label Correction and

Accuracy of Learned Model

Both Eq. (1) and Algorithm 3 suggest that the accuracy

of the counterfactual label correction process (Section IV-C)

depends on the accuracy of the current model (Section IV-D),

and vice versa. Therefore, a highly inaccurate model f can

lead to erroneous label “corrections” for clean data instances

treated as noisy, and missed true noisy labeled data instances,

which can in turn cause further degradation of f . We avoid

this scenario by pre–training a model g (used as a starting

point in Algorithm 3) using a subset of training data that are

verified to be clean, as detailed in Section IV-B. Similarly,

a model f with medium confidence can mislead the coun-

terfactual label correction module into making mistakes (e.g.,

pairing detected noisy data instance with the wrong label).

Thankfully, such mistakes do not increase the number of noisy

labeled data instances, since the suspected data instances were

initially noisy labeled. Our experiments suggest that with a

reasonable true correction rate (up to 70% for CIFAR–10), the

counterfactual label correction model eventually provides more

clean data instances, leading in turn to an accurate learning

model. In the best case scenario, i.e., when the learning

model f is highly accurate, the counterfactual label correction

module also achieves a high true correction rate, increasing

the number of clean data instances in the training set, and in

turn, potentially further improving the accuracy of f .

V. COMPLEXITY ANALYSIS

A. Computation of D̃ns: The noisy threshold selection process

(Section IV-B) comprises three steps. First, the labels of

|Dpre| × τp randomly selected data instances are shuffled,

and their loss value is computed (Algorithm 1 steps: 1–2) in

O(Npreτp), where Npre < N denotes the number of the data

instances in Dpre. Next, model g (i.e., ResNet34) is trained

Algorithm 3 NDCC

Input: Noisy dataset D̃, pre–train clean dataset D̃pre, pre–

train clean model g, learning model f , pre–set learning

epoch Tpre, maximum epoch for learning model Tn,

maximum epoch for counterfactual searching Tcf , and

learning round Tall

1: t← 1, thr1 ← 0, Wt, D̃t ← D̃

2: Compute the noisy loss region D̃ns using Algorithm 1

3: Calculate lpci by Eq. 2 with g for each xi ∈ D̃t)

4: while (t ≤ Tall and D̃t equals to D̃t−1) do

5: /*Noise Detection Section*/

6: for xi ∈ D̃t do

7: Xt
c, X

t
n ← ∅

8: Calculate hc(xi,Wt) using Equation (2)

9: if hc(xi,Wt) ≤ thrt then

10: Set φt
i ← 1, and add xi into Xt

c

11: else

12: Set φt
i ← 0, and add xi into Xt

n

13: end if

14: end for

15: if Xt
n = Xt−1

n and t >= 2 then

16: break

17: end if

18: /*Noise Correction Section*/

19: Select data instances with minimum value of hn for

each label and set these as counterfactual starting points

{x1
cf0

, x2
cf0

..., x
j
cf0

, ..., xK
cf0
}

20: for Each xi ∈ Xt
n do

21: Output x̂
j
i and hn(x̂

j
i ) using algorithm 2

22: Update label of xi with j

23: end for

24: Get label revised dataset as D̃t+1

25: Train the learning model f(Wt) with updated D̃t for

Tn epochs by minimizing the cross entropy loss and

output f(Wt+1)
26: /*Updating Loss Threshold*/

27: Calculate ltpni
by Eq. 2 with f(Wt+1) for xi ∈ D̃pre

28: Calculate ltdiffi = lpci − ltpni
for xi in D̃pre

29: Compute thrt+1 by Eq. (3)

30: t← t+ 1
31: end while

Output: f(WT ) and D̃Tall

(Algorithm 1 step: 3) in O(NprewhChk
2dc), where Ch is the

number of channels, w and h are the width and height of

the input data, k is the size of the filter, and c and d are the

number and spatial dimension of filters, respectively. Finally,

ldiff and D̃ns are computed in O(Npre + 1). Thus, the overall

complexity of D̃ns computation is O(NprewhChk
2dc) (i.e.,

dominated by the training time of ResNet34).

B. Counterfactual Data Generation: Counterfactual data are

generated for each data instance in Nns, whose label is to

be corrected, in O(wh) in each iteration ≤ Tcf (Algorithm 2

steps: 5–6). Therefore, the overall complexity for counterfac-

tual data generation is O(NnsKwhTcf ).

C. Overall NDCC Complexity: Algorithm 3 comprises six
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steps. First, the noisy label threshold is computed (Algorithm

3 steps: 1–3) in O(NprewhChk
2dc). Next, in each training

iteration t, hc is computed for all data instances in O(NK),
where N denotes the total number of data instances in D̃

(Algorithm 3 steps: 6–17). Then, the starting points for coun-

terfactual data generation are selected in O(N) (Algorithm

3 step: 19). After selecting the starting points, counterfactual

labels are produced in O(NnswhKTcf ) (Algorithm 3 steps:

20–24). Next, ResNet34 is trained on the updated dataset in

O(NwhChk
2dc). Finally, the noisy threshold is recalculated

in O(N) (Algorithm 3 steps: 27–29). Thus, the overall com-

plexity of NDCC is O(TallNwhChk
2dc+TallNnswhKTcf ).

VI. EVALUATION

A. Setting

1) Datasets: We evaluate NDCC on three widely used

benchmark datasets [40]–[42] and a real–world noisy dataset

[43]. CIFAR–10 [44]: An image dataset pre–splitted into

a training/test set of 50, 000 and 10, 000 instances, accord-

ingly. Each data instance (a 32 × 32 × 3 colorful image) is

associated with 10 classes (i.e., airplane, automobile, bird,

cat, deer, dog, frog, horse, ship, truck). CIFAR–100 [44]:

An image dataset that is similar to CIFAR–10, and contains

100 classes of data, with each class having 600 instances.

The 100 classes are grouped into 20 superclasses. Every

image has a “fine” label representing its class as well as a

“coarse” label representing its subclasses. Fashion–MNIST

[43]: Real–world dataset of 28 × 28 grayscale images, each

associated with one of 10 classes (i.e., t-shirt/top, trouser,

pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot),

pre–split into a training/test set of 60, 000 and 10, 000 data

instances, respectively. Clothing1M [40]: Large–scale real–

world clothing recognition dataset comprising over 1 million

images of clothing items with noisy labels.

2) Noise Environment: With the exception of Clothing1M,

all datasets are clean, or with a negligible number of noisy

labeled data instances [22]. To evaluate the effectiveness of

NDCC in noisy labeled environments, we consider two types

of noise: (i) Symmetric Noise: the true label flips to all other

labels with equal probability. The symmetric noise simulates

the label noise caused by a random mistake in the labeling

process; (ii) Asymmetric Noise: a noisy label is generated

by flipping the true label to the next class (i.e., label i ←
i + 1;mod K) [21]. In both cases, τ denotes the noise rate.

We consider τ ∈ {0.2, 0.4, 0.6, 0.8} to evaluate NDCC on

scenarios involving a variable number of noisy labeled data

instances (ranging from small to large).

3) Experimental Setup: All experiments use ResNet34 and

the following hyper–parameter values: mini–batch size (32),

number of training epochs (90), optimizer (AdamW [45]),

learning rate (0.01). In NDCC, we set T = 3 and Tn = 30
in Algorithm 3 to ensure that the overall number of training

epochs for NDCC is the same as with the baselines (i.e.,

90). The counterfactual training epoch Tcf in Algorithm 2

is set to 50. In all experiments involving CIFAR–10, CIFAR–

100, and Fashion–MNIST datasets, we randomly select 2, 000
data instances as the clean pre–trained dataset Dpre to train g

using the following hyper–parameters: mini–batch size (32),

number of training epochs (50), and optimizer (AdamW).

Among the remaining data instances, we randomly select

10, 000 as the training set D. We use the default test set for

CIFAR–10, CIFAR–100, and Fashion–MNIST. For CIFAR–

100, we focus on the 20 superclasses. For Clothing1M, we

randomly select 2, 000 clean instances as Dpre, and 10, 000
as D̃ (i.e., 5, 000 data instances are randomly selected from the

clean training set, and 5, 000 are randomly selected from the

noisy labeled set). We experiment with subsets of CIFAR–

100 and Clothing1M to demonstrate NDCC’s effectiveness

in real–world noisy datasets. However, NDCC cannot readily

handle the complete number of data instances in these datasets

because of its computational complexity (Section V). Naively

parallelizing the generation of counterfactual labels for each

data instance may improve NDCC’s scalability, however this

is out of scope of this work.

4) Baselines: CE (Cross Entropy) uses cross entropy loss,

and has no particular strategy for handling noisy labeled

data instances. CE–Clean uses solely clean data instances for

training, and thus achieves the theoretical best performance.

CORES (Confidence Regularized Sample Sieve) [21] uses

peer loss to detect suspected noisy labeled data instances with-

out unsupervised training. AUM (Area Under the Margin)

[22] uses the AUM statistic to exploit the differences between

the clean and noisy labeled data instances. AUM excludes

the detected noisy data instances from the training process.

NN–Correction (Nearest neighbor noisy label correction)

[46] uses the same noisy detection module as NDCC, but

noise label correction is performed using k–nearest neighbors.

Loss Correction Procedures that are both application domain

and network architecture agnostic were introduced in [47] for

loss correction. Both procedures require a priori knowledge,

or estimation, of a stochastic matrix T that summarizes the

probability of one class being mislabeled as another under

noise. The first procedure, Backward T̂ , multiplies the loss

by T−1, whereas the second procedure, Forward T̂ , multiplies

network predictions by T . In both cases, an estimate of matrix

T , denoted T̂ , is obtained and used instead of T [47].

5) Evaluation Metrics: We divide the evaluation process

into three parts: (i) noise detection, (ii) noise correction, and

(iii) overall accuracy on the clean test set under different types

of label noise in the training set.

Recall Xn denotes the accumulated detected noisy data set

with respect to all learning rounds Tall, and D̃ is the noisy

input data set. Let XD̃ denote the true noisy data set. We

introduce the following score to evaluate noise detection per-

formance: (i) True detection rate: Xdt =
|Xn∩XD̃|

|XD̃| measures

the ratio of truly identified noise data instances; (ii) Wrong

detection rate: Xdw =
|Xn∩(D̃−XD̃)|

|Xn|
measures the ratio of

misidentified clean data instances as noisy; (iii) Miss detection

rate: Xdm =
(|D̃−Xn)∩XD̃|

|XD̃| measures the ratio of noisy data

instances identified as clean. In Section VI-B, we only discuss

Xdt and Xdw, since Xdm can be directly derived from Xdt

by Xdm = 1−Xdt.

In noise correction, we check whether NDCC can correctly

assign the true labels to corresponding detected noisy data
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TABLE II
TRUE DETECTION RATE Xdt (HIGHER IS BETTER)

Fashion–MNIST CIFAR–10 CIFAR-100

approach/NS Environment (τ ) Sym Asym Sym Asym sym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.6

CORES 0.56 0.55 0.57 0.59 0.51 0.50 0.56 0.57 0.60 0.58 0.61 0.59 0.64 0.61 0.62 0.57 0.58
NDCC 0.76 0.75 0.75 0.77 0.67 0.68 0.72 0.74 0.80 0.81 0.81 0.84 0.78 0.76 0.78 0.82 0.65

TABLE III
WRONG DETECTION RATE Xwt (LOWER IS BETTER)

Fashion–MNIST CIFAR–10 CIFAR–100

approach/NS Environment Sym Asym Sym Asym Sym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.6

CORES 0.13 0.07 0.02 0.01 0.13 0.09 0.05 0.03 0.18 0.10 0.09 0.07 0.20 0.14 0.09 0.03 0.26

NDCC 0.17 0.15 0.07 0.04 0.16 0.14 0.13 0.09 0.26 0.17 0.14 0.04 0.27 0.21 0.17 0.09 0.30

TABLE IV
COUNTERFACTUAL TRUE CORRECTION RATE X̂cfc (HIGHER IS BETTER)

Fashion–MNIST CIFAR–10 CIFAR–100

approach/NS Environment Sym Asym Sym Asym Sym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.6

NN-correction 0.24 0.11 0.04 0.01 0.19 0.12 0.05 0.02 0.28 0.13 0.04 0.04 0.22 0.09 0.04 0.01 0.02
NDCC 0.62 0.61 0.59 0.60 0.57 0.55 0.54 0.56 0.68 0.70 0.72 0.71 0.67 0.65 0.68 0.70 0.47

TABLE V
DECREASED NOISY RATE dτ (LOWER IS BETTER)

Fashion–MNIST CIFAR–10 CIFAR–100

approach/NS Environment Sym Asym Sym Asym Sym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.6

CORES 0.07 0.16 0.22 0.23 0.06 0.14 0.19 0.23 0.08 0.17 0.22 0.24 0.09 0.18 0.21 0.23 0.20
NN-correction 0.02 0.01 -0.03 -0.02 0.01 0.01 -0.03 -0.02 0.01 0.03 -0.03 -0.01 0.02 -0.02 -0.02 -0.02 -0.04

NDCC 0.08 0.21 0.30 0.38 0.06 0.18 0.27 0.35 0.06 0.17 0.29 0.44 0.07 0.16 0.26 0.42 0.23

instances. Let X̂r denote the data set where NDCC correctly

pair detected noisy data instances with their true labels, and

X̂w denote the detected noisy data instances that are assigned

wrong labels. We define the following two scores: (i) True

counterfactual label correction rate X̂cfc = |X̂r|
|Xn|

, and (ii)

False counterfactual label correction rate X̂cfw = |X̂w|
|Xn|

.

Finally, we measure the decreased noisy labeled rate

dτ after applying the noisy label detection of baselines and

NDCC, and test the accuracy of each trained learning model

f . dτ for CORES is computed as dτ = τ −
|XD̃|Xdm

|D̃|−|Xn|
, where

|D̃| − |Xn| denotes the number of currently available training

data instance, excluding the detected noisy data instances, and

|Xn|Xwd + |XD̃|Xdm denotes the remaining miss detected

noisy data instances. dτ for NDCC and NN–Correction is

defined as:dτ = τ −
|XD̃|Xdm+|Xn|X̂cfw

|D̃|
, where |Xn|X̂cfw is

seen as noisy data instance because of correction failure.

We additionally perform a Wilcoxon signed–rank test [48]

to compare NDCC with the baselines across datasets. Specifi-

cally, let di denote the score difference between two classifiers

in the i−th dataset (1 ≤ i ≤ N ). Difference scores are

ranked by absolute value, and the average rank is assigned

if two classifiers are tied. The sum of ranks for the datasets

where the second classifier outperforms the first is denoted

as R
+. Conversely, the sum of ranks for the datasets where

the first classifier outperforms the second is denoted as R
−.

When di = 0, the numbers are assigned evenly to R
+ and

R
−. Thus R

+ =
∑

di>0 rank(di) +
1
2

∑

di=0 rank(di), and

R
− =

∑

di<0 rank(di) +
1
2

∑

di=0 rank(di). The table of

critical values for Rcrtc = min(R+, R−) [49] is then used

to determine whether to reject the hypothesis that the first

classifier is better than the second.

Finally, we perform a Friedman test to quantitatively eval-

uate the statistical significance of classification performance

achieved by the various methods. Specifically, given an evalu-

ation metric, the rank of each classifier is computed. Let RCj

denote the average rank of classifier j. The chi–square value

is then computed as χ2
F = 12NC

kC(kC+1) [
∑kC

j=1 R
2
Cj
− kC(kC+1)2

4 ],
where NC is the number of datasets, and kC is the total

number of classifiers. The Friedman score is computed as

FS =
(NC−1)χ2

F

NC(kC−1)−χ2

F

. If FS is greater than the critical value

given by the chi–square critical value table [50], the hypothesis

that “the classifiers have the same performance on the datasets”

can be rejected. In the event that the Friedman test concludes

that “the classifiers are statistically different”, we perform a

Nemenyi test [51] to find out which classifiers are statistically

different. Specifically, we compute the difference between the

average ranks for any pair of two classifiers. If the differ-

ence is greater than or equal to the critical difference (CD)

value, we conclude that the two classifiers are significantly

different from each other. The CD value is calculated as

CD = qα

√

kC(kC+1)
6NC

, where qα is the critical value given

by the look–up table.

B. Experimental Results

1) Influence of Size of Dpre: We begin by exploring the

influence of the size of data instances in Dpre. The main

impact of training g with different sizes of Dpre is on the

selection of the label threshold, which is used to detect

possible noisy labeled data instances. As shown in Figure

9, the selected label threshold becomes more robust, and

the true detection rate increases (similarly, wrong detection

rate decreases) with increasing size of Dpre. However, since

obtaining Dpre may be time consuming and/or costly, keeping
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TABLE VI
EXPERIMENTS RESULT OF TEST ACCURACY.

Fashion–MNIST CIFAR–10 CIFAR–100
approach/NS Environment Sym Asym Sym Asym Sym

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.6

CE 0.63 0.49 0.28 0.11 0.58 0.42 0.27 0.12 0.52 0.41 0.26 0.12 0.59 0.43 0.27 0.12 0.14
CORES 0.71 0.65 0.56 0.39 0.75 0.69 0.64 0.48 0.67 0.62 0.52 0.41 0.69 0.65 0.56 0.42 0.41
AUM 0.75 0.69 0.58 0.35 0.79 0.71 0.63 0.41 0.68 0.63 0.55 0.37 0.71 0.65 0.57 0.36 0.48

NN-Correction 0.63 0.45 0.22 0.10 0.60 0.43 0.25 0.12 0.54 0.40 0.19 0.09 0.60 0.37 0.21 0.09 0.06
NDCC 0.72 0.65 0.59 0.52 0.75 0.70 0.65 0.54 0.65 0.60 0.56 0.49 0.67 0.63 0.58 0.51 0.45

CE-Clean 0.78 0.76 0.69 0.64 0.81 0.77 0.72 0.65 0.70 0.66 0.60 0.55 0.73 0.69 0.64 0.57 0.59

TABLE VII
ACCURACY COMPARISON WITH BASELINES BACKWARD T̂ AND FORWARD

T̂ FOR |D̃| = 10, 000 ON CIFAR–10 AND CIFAR–100.

CIFAR–10 CIFAR–100
approach/NS Environment Sym Asym Sym

0.2 0.6 0.2 0.6 0.6

Backward T̂ 0.67 0.51 0.67 0.50 0.38

Forward T̂ 0.69 0.57 0.72 0.59 0.34
NDCC 0.65 0.56 0.67 0.68 0.45

Fig. 9. NDCC’s true detection rate (Xdt), wrong detection rate (Xdw), and
miss detection rate (Xdm) for the first epoch on CIFAR–10 with symmetric
noise τ = 0.2.

its size small is important. The main factor in determining the

minimum size of Dpre is that Xdt should be at least twice the

value of Xwt when the lowest X̂cfc is 0.47 (the lowest value

in our experiments). Otherwise, more clean data instances will

be treated as noisy labeled. In this context, our experiments

are performed with |Dpre| = 2, 000.

TABLE VIII
EXPERIMENT RESULTS ON CLOTHING1M OF Xdt , Xdw , Xdm AND X̂cfc

IN FIRST RUNNING EPOCH.

Dataset Xdt Xdw Xdm X̂cfc

Clothing1M 0.52 0.19 0.48 0.47

2) Noisy Label Detection: We next compare NDCC and

CORES. Table II and III show the true and wrong detection

rates, Xdt and Xdw, for CORES and NDCC. A larger value of

Xdt and smaller value of Xdw indicate better performance, as

the goal is to detect as many true noisy labeled data instances

as possible, while keeping the number of wrong detections

low. Compared with CORES, NDCC’s true detection rate

Xdt increases almost three times more than Xdw, illustrating

that automatically selecting the loss threshold is beneficial, as

opposed to using a fixed threshold, as in [21].

Performing a Wilcoxon test with respect to true detection

rate (i.e., using Table II), we have R+ = 0, R− = 153, result-

ing in Rcrtc = 0. The critical value for the confidence level

of 99.95 given by the look–up table is 51. Since Rcrtc < 51,

we can conclude that NDCC is better than CORES in terms

of true detection rate. Similarly, a Wilcoxon test with respect

to wrong detection rate (i.e., using Table III) gives R+ = 150,

R− = 3, resulting in Rcrtc = 0. Since Rcrtc < 51, CORES

is better than NDCC with respect to wrong detection rate.

3) Noisy Label Correction: We next measure the effective-

ness of NDCC’s counterfactual label correction module by

comparing the label correction results between NN–Correction

and NDCC. Table IV shows that, for both Fashion–MNIST

and CIFAR–10, NDCC’s X̂cfc is much higher than NN–

Correction, especially as τ increases. The performance of NN–

Correction is unsatisfactory because clusters become unreli-

able in the presence of noisy labeled data instances. Instead,

NDCC’s superiority is confirmed with a stable X̂cfc score,

even in severe noisy environments (i.e., τ = 0.6, 0.8). Fi-

nally, Table V shows the decreased noisy rate that different

approaches achieve. NDCC outperforms all baselines in all

noisy environments across both datasets.

Performing a Wilcoxon test with respect to counterfactual

true correction rate (i.e., using Table IV), we get Rcrtc = 0,

since R+ = 0, R− = 153. Since Rcrtc is less than the critical

value of 51 for confidence level of 99.95, we conclude that

NDCC is better than NN–Correction in terms of counterfactual

true correction rate.

Finally, we perform a Friedman test for the three classifiers

using Table V. The calculated Friedman value is 28.72.

Compared with the value of 9.294 in the look–up table for

99% confidence, we observe that the three classifiers perform

unequally on the datasets. Therefore, we perform a Nemenyi

test to compare their performance using the average rank of

each classifier. The critical value for the Nemenyi test is 0.80.

The calculated Nemenyi value indicates the classifiers that are

statistically different are as follows: (CORES, NN–correction);

(NN–correction, NDCC).

4) Overall Evaluation: Table VI shows the accuracy of

NDCC and the baselines. CE, which does not at all perform

noisy detection, is expected to be the least performing ap-

proach. CE–Clean intentionally uses only clean data instances

for training, and is therefore expected to perform ideally. For

both Fashion–MNIST and CIFAR–10, NDCC outperforms the

baselines when noise becomes severe (i.e., τ ≥ 0.6) in both

asymmetric and asymmetric case. Figures 10(b) and 10(d)

in particular, show that NDCC achieves close to the best

performance, which would only be achievable if all training

data instances were clean. In light noisy environments (i.e.,

τ ≤ 0.4), the performance of NDCC is close to AUM, the
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(a) Symmetric noise, NR = 0.2 (b) Symmetric noise, NR = 0.8

(c) Asymmetric noise, NR = 0.2 (d) Asymmetric noise, NR = 0.8

Fig. 10. Test accuracy plots with increasing learning epochs in CIFAR–10 dataset with noise rate (NR) equals 0.2 (left column) and 0.8 (right column).

(a) Fashion–MNIST, Symmetric noise, NR = 0.8 (b) CIFAR–10, Symmetric noise, NR = 0.8

Fig. 11. True corrected rate per label plots in Fashion–MNIST and CIFAR–10 datasets.

best performing baseline. Figures 10(a) and 10(c) show that

both NDCC and CORES perform similarly to CE–Clean. The

reason is that clean data instances comprise a large portion

of training data instances under small noisy rate environment.

However, compared with NN–Correction and CE, the accuracy

of NDCC is higher, illustrating the effect of neither dealing

with noisy labeled instances at all (i.e., CE) as well as using a

naive label correction approach (i.e., NN–Correction). As for

CIFAR–100, AUM is the best performing method, with NDCC

being a close second. Figure 11 shows the final correction

rate per label of CIFAR–10 and Fashion–MNIST. In CIFAR–

10, Pullover is the most difficult class to learn, whereas the

highest label correction rate is achieved for class Bag. In

Fashion–MNIST, Frog has the lowest label correction rate,

as opposed to transportation related classes. Table VII shows

the comparison results of NDCC with the loss correction

procedures described in [47]. Forward T̂ performs better

when the noise rate is low (e.g., τ = 0.2). However, in a

highly noisy environment (e.g., τ ≥ 0.6), NDCC performs

similarly (i.e., when noise is symmetric), or noticeably better

(under an assymetric noise environment) than Forward T̂ .

We attribute the performance degradation of Backward and

Forward baselines to the quality of estimated matrix T (i.e.,

T̂ ). This is due to the training of the network directly on noisy

labeled dataset. When the noise rate is high, more labels are

noisy and thus a biased network is trained, leading to a flawed

estimation of matrix T (i.e., T̂ ).

A Friedman test using Table VI results in a Friedman value

of 74.96. The Friedman value for 99% confidence given by the

look–up table is 15.086, which is smaller than the calculated

value, meaning the three classifiers perform unequally on the

datasets. Therefore, we perform a Nemenyi test to compare

their performance. The average ranks for CE, CORES, AUM,

NN-Correction, NDCC, and CE–Clean are 5.23, 3.29, 2.76,

5.64, 2.76, and 1, respectively. The critical value given for the

Nemenyi test is 1.82. The calculated Nemenyi value indicates
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the classifiers that are statistically different are as follows:

(CE, CORES); (CE, AUM); (CE, NDCC); (CE, CE–Clean);

(CORES, NN–Correction); (CORES, CE–Clean); (AUM, NN–

Correction); (NN–Correction, NDCC), (NN–Correction, CE–

Clearn). In terms of average rank, CE–Clean achieves the

highest rank on every dataset, as well as overall (i.e., av-

erage rank) since it is the theoretical the upper bound. In

addition, NDCC attains a higher average rank than CE, AUM,

CORES, and NN–Correction. Table VIII shows the experiment

result for real–world noisy dataset (i.e., Clothing1M), which

illustrates the efficiency for NDCC when dealing with real–

world noisy. In summary, the experimental results confirm that

NDCC can both effectively detect (and correct) noisy labeled

data instances, and train robust classifiers even in the presence

of severe label noise in the training set.

VII. CONCLUSION

We presented a new approach for robust learning in the

presence of noisy labeling data. Specifically, we proposed

an automatic noisy peer loss threshold selection approach to

separate noisy labeled data instances from clean data instances.

We additionally proposed to leverage counterfactual learning

to correct detected noisy labeled data instances by pairing

them with their most likely true labels. Our experimental

results show the superiority of the proposed approach over

the baselines, particularly in severe label noise environments.

In future work, we wish to reduce our approach’s depen-

dency on a model pre–trained with clean training data. Even

though this is a commonly adopted strategy in noisy learning,

we believe that eliminating the need for manual annotation

and human inspection can benefit noisy learning by allowing

models to be trained on less circumscribed domains (e.g.,

car financing) that are much “messier” than domains with

clear ground truth (e.g., computer vision or natural language

processing). We additionally wish to evaluate the scalability of

our proposed approach using larger and more diverse datasets.
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APPENDIX

We show that the optimal solutions for W and x̂ can

be acquired in an iterative manner by alternating search,

according to Equation 1 and the following lemma.

Lemma 1: The optimal solution found by minimizing W

first and then minimizing x̂i is the same as the optimal solution

found by jointly minimizing W, x̂i.

The parameters W of the learning model and the optimal

counterfactual data instance x̂i with respect to xi are inde-

pendent. The global optimum x̂i is unknown and pre–existed,

and we wish to use learning model with parameters W to find

it. Therefore, the simultaneously obtained optimal solutions

are W∗ and x̂∗
i . Global minimum g(W∗, x̂∗

i
) satisfies the

following equation:

g(W∗, x̂∗
i ) ≤ min

x̂i

min
W

g(W, x̂i). (5)

Because for any x̂i, minx̂i
g(W, x̂i) ≤ g(W∗, x̂i),

min
x̂i

min
W

g(W, x̂i) ≤ min
x̂i

g(W∗, x̂i) (6)

and

min
x̂i

g(W∗, x̂i) ≤ g(W∗, x̂∗
i ). (7)

Combining Equations (6) and (7), we get

min
x̂i

min
W

g(W, x̂i) ≤ g(W∗, x̂∗
i ). (8)

Finally, comparing Equations (5) and (8), we get

g(W∗, x̂∗
i ) = min

x̂i

min
W

g(W, x̂i) (9)

Using Lemma 1, instead of showing g(W, x̂i) is convex

for W and x̂i simultaneously, we can show that g(W, x̂i) is

convex with respect to W and x̂i separately.
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